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This paper describes a general analysis of the vibration characteristics of thin,
open, conical isotropic panels using the h-p version of the finite element method
in conjunction with Love’s thin shell equations. The convergence properties of this
element have been established for particular geometries, thereby endorsing its
suitability for use in further parameter studies. Natural frequencies and modes
have been obtained for two completely free panels using (i) the h-p methodology
reported here, (ii) a commercially available finite element package, and (iii)
experimental work. Excellent agreement has been found between all three
approaches. Some further comparisons with the work of other investigators have
also been performed, and generally good agreement has been found. Finally, a
brief parameter study has been presented for clamped and simply supported open
conical panels with an included angle of p/3, whose semi-vertex angle has been
varied continuously between 0 and p/2. It is noted that the methodology advanced
here for a generic conical panel can also be used to analyse the dynamic behaviour
of closed conical frusta, open or closed cylindrical shells, and flat annular sectorial
plates.
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1. INTRODUCTION

Open conical panels, consisting of a segment of a complete conical shell, are
commonly found in a variety of engineering applications, sometimes as
stand-alone items, but more often than not as a component of a larger, built-up
structure. A good example of this latter type of construction is the tapering tail
section of a civil aircraft’s fuselage. In service, such panels are often subjected to
a variety of different fluctuating loads, and it is essential that their dynamic
integrity can be assured from the design stage onwards. To this end, it is important
that reliable predictive techniques are available; hence it may come as something
of a surprise to realize that as recently as 1981, a comprehensive survey conducted
by Chang [1] echoed the conclusions drawn a decade earlier by Leissa [2], that
‘‘strangely, no references have been found which deal explicitly with the free
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vibrations of such [open conical] shells’’. The most likely reason for this lacuna
concerns the analytical difficulties involved; for a completely closed, right circular
cone or frustum, the two-dimensional nature of the assumed displacement field
can be reduced to a quasi one-dimensional problem through Fourier
decomposition of the circumferential wavemotion—for an open conical panel, no
such simplification exists, and resort must be made to a full two-dimensional
solution scheme.

Love [3] is generally credited with being the first investigator to provide a
general set of equations expressing both the extension, and the changes in
curvature, of an arbitrarily curved thin shell subject to small displacements.
During the 1930s, Love’s work found application to the vibration of completely
closed, right circular cones and frusta in the context of loudspeaker design [4–6].
However, it was not until the 1950s, when the space-age began in earnest, that
further interest was shown in such shells on account of their widespread utilization
in the design of space vehicles. Comprehensive literature reviews of this era have
been compiled by Hu [7], Tang [8], Weingarten [9], and Leissa [2], and more
recently by Liew et al. [10].

Returning to the privative topic of open conical panels, only three† directly
relevant publications could be found at the time of writing. A brief review of these
papers is included here to assess their contribution to the literature, and to help
position the current work.

The first free vibration analysis per se was reported by Srinivasan and Krishnan
[13], who sought the natural frequencies and modes of clamped isotropic conical
panels using Donnell’s shell theory and an integral equation technique.
Unfortunately, the convergence study presented by these authors to justify the
number of terms used in their subsequent parameter study is of doubtful validity,
and hence some caution must be exercised if these latter results are to be used as
a benchmark.

Cheung et al. [14] developed a spline finite strip method which could be applied
to a variety of singly curved shells. They used the results from one of Srinivasan
and Krishnan’s examples to validate the applicability of their general spline
technique to conical panels (among others), and demonstrated significantly better
convergence than the previous authors. It is also worth noting that Cheung et al.
comment on the fact that ‘‘readers can also note that the results of Srinivasan and
Krishnan do not seem to have yet converged and in any case the convergence is
not monotonic’’.

More recently, Lim and Liew [15] have produced a simplified vibration analysis
of a conical panel by modelling it as a shallow shell with a trapezoidal projected
planform. This simplification results in a far more tractable problem than a
conventional cone analysis, and enabled them to produce verifiable results for
panels whose curved ends subtended angles up to 30°. The ubiquitous pb-2 shape
functions were used to represent the assumed displacement field of the panel (for
specific edge conditions), and a Rayleigh–Ritz method furnished the natural

†Although the seminal works of Rossettos and Parisse [11], and Teichmann [12], are not of immediate relevance
to the title problem, both items deserve a mention because they are the earliest pieces of work that specifically
address the dynamic response of open conical panels.
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frequencies by minimizing the energy functional. Their work showed good
agreement with that of Cheung et al. [14], and provided the first known set of
parameter studies and modes for a limited class of conical panels.

Subsequent work by Liew and his co-workers has addressed some interesting
issues related to shallow conical shells, such as the effects of initial twist and
thickness variation [16], through-the-thickness shear flexibility [17], and layered
composite construction [18]. However, all this work is based on the same premise
of a shallow shell with a trapezoidal planform that was developed in [15]; no matter
which of these special cases is chosen therefore, nothing fundamentally new is
contributed to the problem under investigation here.

Clearly, there is scope for further work in this subject area, especially with
regard to the following points: (i) the effect on natural frequencies of different
combinations of edge boundary conditions, in conjunction with variations of the
governing geometric parameters, (ii) the development, and validation, of
alternative analysis techniques for non-shallow conical panels, and (iii) some
experimental verification of the results forthcoming from (i) and (ii).

The purpose of this paper is to provide partial fulfilment of all three of these
categories by developing a solution strategy based on the h-p version of the finite
element method [19, 20], presenting a selection of frequency and mode results from
the analysis, and providing some initial experimental results for validation
purposes. The novelty of the solution scheme is further enhanced by the use of
the highly versatile set of trigonometric p-functions first proposed by Beslin and
Nicolas [21].

2. METHOD OF ANALYSIS

An h-p version of the finite element method is developed here in order to afford
the user a robust, flexible, and economic analysis tool that can accommodate
geometric irregularities such as cut-outs. The h-p methodology adopted here is
similar to that presented elsewhere by the authors [22], so only the essential details
are given here.

Consider the thin conical shell element shown in Figure 1, whose middle surface
is defined by the semi-vertex angle a, the radius of curvature at any point
R(x)=R0 + x sin a (where R0 is the radius of curvature of the small end), the slant
length a and the total included angle f. The cone is assumed to be of uniform
thickness h (with h/R(x) assumed to be small for all x). The components of
displacement of a point on the middle surface are u, v and w in the x, u, and z
directions, respectively.

The state of strain at any point x, u within the shell, distance z from the middle
surface, is equal to the sum of the middle surface (membrane or extensional)
strains and the (flexural or inextensional) strains due to the changes of curvature.
Denoting the middle surface extensional strains in the lengthwise and
circumferential directions by o0

xx , o0
uu , the middle surface changes in curvature in

the lengthwise and circumferential directions by k0
xx , k0

uu , and the middle surface
in-plane shear strain and change in twist by g0

xu , k0
xu respectively, then the state of
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strain at any point x, u, z within the shell can be written:

oxx = o0
xx + zk0

xx

ouu = o0
uu + zk0

uu (1)

gxu = g0
xu +2zk0

xu

where, for a cone [3, 23],

o0
xx =

1u
1x

o0
uu =

1
R(x)

1v
1u

+ u
sin a

R(x)
+w

cos a

R(x)

g0
xu =

1v
1x

+
1

R(x)
1u
1u

− v
sin a

R(x)
(2)

k0
xx =−

12w
1x2

k0
uu =−

1
R(x)2

12w
1u2 +

cos a

R(x)2

1v
1u

−
sin a

R(x)
1w
1x

k0
xu =

sin a

R(x)2

1w
1u

−
1

R(x)
12w

1x 1u
+

cos a

R(x)
1v
1x

− v
cos a sin a

R(x)2

and u, v, and w are the mid-plane (z=0) displacements. The full kinematic
relationships between the displacements at a general point x, u, z, and the
mid-plane displacements u, v, w are given in [23].

By substituting equation (2) into equations (1), and introducing the
non-dimensional element-local co-ordinates j, h which are related to the element
Cartesian co-ordinates through j=(2x/a)−1 and h=(2u/f)−1 (see Figure 1),
the strain–displacement relationship can be rendered in the following matrix form:
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0.1481

0.0000r=4

–0.1481
0–1 1

1.0000

0.0000r=3

–1.0000
0–1 1

0.1481

0.0000r=2

–0.1481
0–1 1

1.0000

0.0000r=1

Function
number

For r   4, the following set of
trigonometric functions is used
as hierarchical functions. 

Hermite cubics set fr(   )

–1.0000
0–1 1

1.0000

0.0000r=8

–1.0000
0–1 1

1.0000

0.0000r=7

–1.0000
0–1 1

1.0000

0.0000r=10

–1.0000
0–1 1

1.0000

fr(   ) =sin sin(r–4)(   +1)
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–1.0000
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0.0000r=5

Trigonometric set fr(   )
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Note that every occurrence of R(x) in equation (3) has been replaced by b(x)/f
so that there is only one x-dependent term in the coefficient of each differential
operator. (Note also that the circumferential arc length of the cone, b(x)0 b(j).)

For an isotropic material, the well-known constitutive relationship is given by

sxx 1 n 0 oxx

suu =
E

(1− n2)
n 1 0 ouuG

G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

ltxu 0 0
(1− n)

2
gxu

i.e., s=Do. (4)

For the type of problem under consideration, it is advantageous to use the same
set of assumed displacement functions to represent the motions in all three
co-ordinate directions. To this end, as ascending hierarchy of special trigonometric
functions [21], used in conjunction with Hermite cubics, will furnish a robust
complete set of admissible displacement functions, f(j or h). (This set is

T 1

The first ten assumed displacement functions
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summarized in Table 1.) Hence the in-plane displacement fields u and v, and the
out-of-plane displacement field w, may approximately be represented as follows:

u(j, h)= s
pux

r=1

s
puu

s=1

Xr,sfr (j)fs (h)

v(j, h)= s
pvx

r=1

s
pvu

s=1

Yr,sfr (j)fs (h)

w(j, h)= s
pwx

r=1

s
pwu

s=1

Zr,sfr (j)fs (h). (5)

The nodal displacements/rotations, and the amplitudes of the hierarchical
functions along the edges and in the interior of the panel element, Xr,s , Yr,s and
Zr,s constitute the generalized co-ordinates of the problem. (Note: the in-plane
degrees of freedom only require compatibility of the u- and v-displacements to
effect C0 continuity; there is no requirement to match the first derivatives of these
in-plane functions.) Each summation which appears in equation (5) is taken over
[any number of] p assumed modes; the first subscript on p denotes the type of
displacement field and the second denotes whether it is in the x- or u-direction.
Equation (5) can be written more succinctly in matrix notation as

d=Nq (6)

where d= {u(j, h), v(j, h), w(j, h)}T, q= {Xr,s , Yr,s , Zr,s}T and N is a rectangular
matrix containing the shape functions. Hence, the strain energy of the conical
panel element, which is given by

U=
1
2 g

1

−1 g
1

−1 g
h/2

−h/2

oTs
ab(j)

4
dz dh dj, (7)

can be constructed from equations (3), (4) and (6). Thus

U=
1
2

qT$a4 g
1

−1 g
1

−1 g
h/2

−h/2

[DN]TD[DN]b(j) dz dh dj%q. (8)

The term in the square brackets can be identified as the element stiffness matrix
KE of the conical panel.

Similarly, the kinetic energy of the thin conical panel element is given by

T=
1
2

r g
1

−1 g
1

−1 g
h/2

−h/2

d� Td�
ab(j)

4
dz dh dj. (9)

Substituting equation (6) into equation (9) yields

T=
1
2

q̇T$r a
4 g

1

−1 g
1

−1 g
h/2

−h/2

NTNb(j) dz dh dj%q̇. (10)

Evidently, the term in the square brackets is the element mass matrix ME of the
conical panel.
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Initial attempts to carry out the matrix multiplication and integration required
to evaluate KE and ME symbolically, in the manner described elsewhere by the
authors [22], met with little success due to the vast amount of algebra generated
for each term in each matrix. The sheer size of the resulting code (in excess of
100 MB) actually prevented it from compiling, and resort was ultimately made to
a full two-dimensional Gauss–Legendre numerical quadrature scheme. This
scheme, which was implemented using commercially available software [24],
dynamically allocates the number of integration points in a given calculation to
ensure that a highly accurate value of the integral is found. This is a particularly
useful feature for the current problem where the circumferential arc length b varies
as a function of x, and constitutes a much greater degree of analytical complexity
than is found in similar formulations for cylindrical shells and flat plates.
(Although ultimately the same size eigenproblem has to be solved irrespective of
whether it is formulated algebraically or numerically, it will come as no surprise
to learn that there is a significant run-time penalty to pay—and hence extra CPU
cost—when constructing the stiffness and mass matrices numerically).

Inter-element compatibility is achieved simply by matching the appropriate
generalized co-ordinates (displacement and rotation for the out-of-plane C1

continuity, but only displacement for the in-plane C0 continuity) at common
element nodes and along common edges. This procedure ensures the elements are
fully conforming and, moreover, facilitates assembly of the global stiffness and
mass matrices KG and MG. (It should be noted that an assembly of elements in
the x-wise direction will require the appropriate ‘‘small end’’ radii to be specified
in successive elements.)

A variety of different boundary conditions may be applied to the panel by
nullifying the appropriate generalized co-ordinates from KG and MG which
correspond to fixed degrees of freedom. Hence any combination of shear
diaphragm (D), simple support (S), clamped (C) or free edges (F), or corner point
supports (P), can be accommodated in the analysis. Note: in the current
formulation, a shear diaphragm permits an in-plane translation across the support,
but prevents w-wise motion normal to it; a simple support permits rotation of the
plate normal about the supporting edge, but prevents all three (u, v and w)
translational freedoms.

By assuming simple harmonic motion and the absence of any external forcing
agency, the governing equations of motion for free vibration can be obtained by
combining the expressions for the strain and kinetic energy of the panel into a total
potential energy expression, and then employing Lagrange’s equation. This yields
a standard matrix-eigenvalue problem of the form

[KG −v2MG]{q}= 0. (11)

The eigensolutions of equation (11) yield the natural frequencies in radian units,
rendered here in the most appropriate form for ready comparison with the work
of others and with the experimental results. Corresponding to each eigenvalue is
an eigenvector which may be used in conjunction with equation (5) to recover the
associated displacement field of each element in the model, and hence the complete
mode of the panel under consideration.
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Figure 2. Photograph showing the experimental testing of a freely suspended conical panel.

3. INITIAL RESULTS: CONVERGENCE STUDIES FOR F–F–F–F PANELS
AND VALIDATION FROM EXPERIMENTAL TESTS

In view of the limited work that has been carried out in this general subject area,
it was decided that some experimental work would provide a valuable reference
datum for the subsequent theoretical study (see Figures 2 and 3). Completely free
edge conditions were selected for this exercise because (i) it is the easiest
configuration to test in a laboratory environment, and (ii) it is the most exacting
proof of any proposed theoretical solution scheme. To this end, two different
aluminium conical panels were produced for testing, which will henceforth be
referred to as Cone ( 1 and Cone ( 2; their geometric and material properties
are summarized in Table 2.

For the theoretical analysis, it was first considered germane to undertake a
convergence study using three different h meshes, each with different amounts of
p-enrichment, for the shallow Cone ( 1. The frequencies of the first ten elastic
modes are presented in Table 3. As would be expected, the frequency parameters
are seen to converge monotonically from above, yielding upper bounds to the
exact values. The various mixtures of the h- and p-parameters were chosen to
reveal the effect of systematically refining the h-mesh at the expense of
p-enrichment. The term MO refers to the final order of the matrix-eigenvalue
problem solved. Such a strategy clearly reveals the greater efficiency of the single
super-element, which concurs with other observations [15]. (A fully converged set
of frequencies generated from a 20×20 mesh of SHELL 63 elements in ANSYS
5.3 [25] is included in the final column of Table 4 for additional comparison
purposes.) Obviously, in any given study, the number of elements, and degree of
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Figure 3. Schematic showing the data acquisition equipment used to capture the test data from the
experiment shown in Figure 2.

p-enrichment, required to obtain a converged solution will be highly dependent on
the cone geometry. However, for Cone ( 2, converged solutions arising from a
variety of mesh designs revealed that the most economical solution was still
forthcoming from a single super-element boosted to p=16. In general, however,
different mesh combinations should always be considered.

The first ten theoretically calculated elastic modes of both conical panels are
shown in Figure 4. Referring to the shallow Cone ( 1, it might initially be

T 2

The physical properties of the two conical panels used for experimental purposes

a (deg) a (m) R0 (m) f (deg) h (mm) E (N/m2) r (kg/m3) n

Cone (1 3·8 1·14 0·34 130 2·0 70E9 2700 0·3
Cone (2 26·5 1·12 0·16 180 2·0 70E9 2700 0·3
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T 3

Convergence study based on three different mesh designs. The first ten elastic
frequencies of F–F–F–F Cone ( 1

1 4 9
h ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV 400
p 8 16 3 6 2 4 0

f1 (Hz) 7·25 7·21 7·27 7·22 7·24 7·21 7·22
f2 (Hz) 12·70 12·32 12·80 12·36 12·53 12·34 12·30
f3 (Hz) 18·59 18·21 18·73 18·25 18·45 18·23 18·21
f4 (Hz) 34·49 34·40 35·94 34·67 35·59 34·64 34·42
f5 (Hz) 44·48 44·32 46·12 44·60 45·66 44·57 44·35
f6 (Hz) 68·22 67·78 72·57 68·46 69·93 68·22 67·78
f7 (Hz) 76·41 75·43 77·34 75·70 76·65 75·61 75·30
f8 (Hz) 76·61 76·05 78·09 76·22 77·00 76·18 75·98
f9 (Hz) 88·32 87·80 93·80 88·51 90·18 88·27 87·76
f10 (Hz) 114·13 113·65 115·70 113·97 118·62 114·58 113·53
MO 432 1200 456 1008 644 1280 2646

supposed that the modal behaviour of this particular panel will be very similar to
that of an equivalent cylindrical panel. However, it is evident from the modes
presented in Figure 4(a) that even a modest amount of conicity markedly alters
the behaviour of what might mistakenly have been described as a nominally
cylindrical panel—modes 6, 9, and 10 clearly reveal how the opposite curved ends
can vibrate with a different number of half waves in the circumferential direction,
a feature that is never observed on a genuine cylindrical shell. This effect becomes
more pronounced as the semi-vertex angle a is increased, as evidenced by modes
6–10 of Cone ( 2 shown in Figure 4(b).

T 4

The first ten elastic frequencies of both F–F–F–F conical panels

h-p ANSYS Experiment
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
Cone (1 Cone (2 Cone (1 Cone (2 Cone (1 Cone (2

f1 (Hz) 7·21 4·65 7·22 4·31 7·5 4·5
f2 (Hz) 12·32 8·75 12·30 8·58 12·7 8·9
f3 (Hz) 18·21 11·32 18·21 11·28 18·2 11·5
f4 (Hz) 34·40 20·85 34·44 20·63 35·6 20·9
f5 (Hz) 44·32 22·63 44·36 21·92 46·0 21·7
f6 (Hz) 67·78 33·06 67·81 32·71 59·5 33·2
f7 (Hz) 75·43 47·83 75·31 46·68 70·4 46·6
f8 (Hz) 76·05 47·87 75·98 47·20 73·1 47·4
f9 (Hz) 87·80 63·51 87·76 63·16 90·4 58·6
f10 (Hz) 113·65 67·95 113·57 66·46 N/A 63·7

For Cones #1 and 2: h=1 and p=16 giving a total MO=1200.
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For the experimental work, a comprehensive series of simple tap tests was
performed on both conical shells. Each shell was suspended vertically, with the
narrow end uppermost, using one (or two) soft elastic cords suspended from a rigid
A-frame to permit both symmetric and asymmetric suspension possibilities. See
Figures 2 and 3 for a full description of the rig arrangement and the measurement
system used for data acquisition. A broad-band excitation was delivered by
tapping the shell with an instrumented hammer, and the response monitored by
a wax-mounted lightweight accelerometer. A number of different tapping and
monitoring positions was used to capture the modal response. A short time-history
of the input and response signals was acquired and subsequently used as the basis
for a FFT analysis; this was carried out using a signal processing routine within
the MATLAB environment. Natural frequencies were identified from the resonant
peak and phase-shift information available from the resulting frequency–response
function. Typical results are presented in Table 4, alongside the theoretically
derived data. No attempts were made experimentally to determine the modes of
vibration.

Very good agreement is found between the results arising from the current work,
experimental data, and a proprietary FE package, with the largest discrepancies
of 14% arising in the comparison between the theoretical and experimental results
for the 6th mode of Cone (1, and 10% arising in the comparisons between the
theoretical and experimental results for the 9th mode of Cone (2. The
discrepancies may be attributed to the fact that neither experimental sample was
perfectly conical, and that the stiffness of the suspension bungies may have exerted
some influence on the notionally free edge conditions. However, the level of
agreement shown in Table 4 instils confidence in the solution scheme advanced
here, and confirms its suitability for use in further parameter studies.

4. FURTHER RESULTS AND PARAMETER STUDIES

4.1.    

As mentioned in Section 1, only two† pertinent references are currently available
which specifically address the subject of free vibration of thin, isotropic, conical
panels. These papers, written by Cheung et al. [14], and Lim and Liew [15], and
the results presented therein, form the basis of a comparison study intended to
furnish further confidence with the h-p methodology.

The first comparison study concerns the work of Cheung et al. [14], who
analysed the clamped conical panel (which was originally specified by Srinivasan
and Krishnan [13]) defined in the current nomenclature by a/s=0·6, a/h=100,
a/R0 =3, a=30°, f=60°, and n=0·3. They presented non-dimensional
frequency results according to V=va2(rh/D)1/2, and demonstrated monotonic
convergence across the first four modes as both the number of finite strips, and
the number of sections into which each finite strip is divided, was increased. The
most highly converged frequencies arising from Cheung et al.’s work are presented
in Table 5, alongside those from the current h-p methodology, which were

†The work of Srinivasan and Krishnan [13] has not been included here for the reasons mentioned in Section 1,
namely, the absence of reliably converged results.



Mode 1: f=7.21 Hz Mode 6: f=67.78 Hz

Mode 2: f=12.32 Hz Mode 7: f=75.43 Hz

Mode 3: f=18.21 Hz Mode 8: f=76.05 Hz

Mode 4: f=34.40 Hz Mode 9: f=87.80 Hz

Mode 5: f=44.32 Hz Mode 10: f=113.65 Hz

(a)
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Figure 4(a). Caption on opposite page



Mode 1: f=4.65 Hz Mode 6: f=33.06 Hz

Mode 2: f=8.75 Hz Mode 7: f=47.83 Hz

Mode 3: f=11.32 Hz Mode 8: f=47.87 Hz

Mode 4: f=20.85 Hz Mode 9: f=64.51 Hz

Mode 5: f=22.63 Hz Mode 10: f=70.95 Hz

(b)
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Figure 4(b).

Figure 4. (a) Theoretically computed modes for Cone ( 1. (b) The theoretically computed modes
for Cone ( 2.
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T 5

The first four non-dimensional frequency parameters V=va2(rh/D)1/2 for a clamped
conical shell defined as a/s=0·6, a/h=100, a/R0 =3, a=30°, f=60°, and

n=0·3. Comparison of the h-p results with those generated by
Cheung et al. [14]

V1 V2 V3 V4

h-p (h=1, p=10) 210·58 260·08 309·33 355·56
h-p (h=1, p=16) 209·84 257·11 307·90 351·90
Cheung et al. [14] 213·4 262·5 314·7 358·6

calculated using a single super element hierarchically enriched firstly with p=10,
and secondly with p=16, for all three displacement fields in both the j- and
h-directions. Excellent agreement is obtained, with the results from the current
work being marginally lower than those of Cheung et al.; maximum difference of
just 2% is observed. This level of agreement, obtained for a conical panel with
a moderate semi-vertex angle, helps corroborate the validity of the h-p
methodology advanced here.

The second comparison study concerns the work of Lim and Liew [15], who
deliberately restricted their analysis to shallow cones with trapezoidal planforms;
the formulation they adopted requires a little manipulation to ensure a genuine
like-for-like comparison with the present work. (The nomenclature adopted byLim
and Liew will be retained in this section only, and explained where necessary.)

Four example cases are considered here, all with a cone semi-vertex angle, a,
of 7·5°:

(i) CFFF, u0 =30°, a/s=0·2;
(ii) CFFF, u0 =30°, a/s=0·8;
(iii) CCCC, u0 =20°, a/s=0·2;
(iv) CCCC, u0 =20°, a/s=0·8;

(The CFFF cases had the larger radius end clamped.) The parameter u0 is the
base subtended angle of Lim and Liew’s formulation, which is related (see [15])
to the base subtended angle f in this work by the relationship cos a=tan (u0/2)/
tan (f/2). Hence, to obtain a strict comparison, the base subtended angles used
in the current work were calculated to be f=30·247° for cases (i) and (ii), and
f=20·169° for cases (iii) and (iv).

Results for the frequency parameter l=vab0(rh/D)1/2 are presented for the first
eight modes of each case in Table 6. (Lim and Liew’s parameter b0 is the projected
length of the base subtended arc length on the trapezoidal planform of the shallow
cone.) On closer inspection, it is apparent that the results from the h-p
methodology are consistently lower than Lim and Liew’s results, especially the
fundamental and first few overtone frequencies†, whilst broad general agreement

†For example, the fundamental frequency of case (ii) cantilevered panel as calculataed by the h-p methodology
is 0.53 times that calculated byLimandLiew.The correspondingmode is shown inFigure 5(a); with such an extreme
aspect ratio, it is not surprising that this mode is slow to converge.
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is found at the higher frequencies. Such a discrepancy was a cause for concern,
especially since there are no other comparable results in the literature against
which further checks could be made. Hence, to obtain independent arbitration, it
was decided to construct a detailed finite element model using the 4-noded
SHELL-63 elements available in ANSYS [25], and to include these additional
results for completeness (see Table 6). From this study, the ANSYS results confirm
the validity of the results arising from the h-p methodology, and suggest a lack
of convergence in Lim and Liew’s work. Upon further reflection, this would seem
the most likely explanation, especially in view of the extreme aspect ratios
considered by Lim and Liew. For example, the CCCC case (iv) is such that an
ANSYS mesh of 350 elements along the length and 25 elements around the
circumference was necessary to obtain a converged set of results from ANSYS
whilst ensuring the individual element aspect ratios were not excessively distorted!
The results for this particular case are most illuminating: e.g., the fundamental
mode consists of a small ‘‘bulge’’ extending no more than 10% of the panel length
and localized at the base end of the panel [see Figure 5(b)]. This adds weight to
the conjecture that Lim and Liew’s results are not fully converged, since their
methodology is based upon the use of global functions, and would therefore
require the use of extremely short wavelength assumed displacement functions to
‘‘capture’’ such a localized mode; there is no evidence they used such high order
modes. In the light of this, the usefulness of Lim and Liew’s results as benchmark
data must be questioned.

This exercise highlights two important problems associated with the dynamic
behaviour of conical shells: (i) if extreme geometries are considered, highly
localized modes of vibration are likely to result, and these will prove difficult to
model accurately without a priori knowledge; and (ii) the h-mesh/p-boost design
which gives fully converged frequencies for one particular cone geometry almost
certainly will not give similarly converged frequencies for a different geometry, so
in general it will be necessary to validate the convergence of each and every case.

4.2.      

In view of the large number of parameter combinations that could be studied,
it was decided to limit the scope of the current work to an investigation of just
one variable, namely the effect on frequency of varying the cone semi-vertex angle
a. This variable was chosen simply because it demonstrates most clearly the effects
of ‘‘conicity’’ in a given panel. Two different sets of boundary conditions were
considered for the panel under consideration, namely (i) simply supported around
all four edges, and (ii) fully clamped around all four edges, since such
combinations probably yield respectively the extremes of flexibility and stiffness
that could be realized in practice by the frames and stringers of a typical
sub-structure. The physical dimensions attributed to the following [fixed] panel
parameters are representative of those found in civil aviation structural
specifications: a/h=333·33, a/R0 =2, f=60°, E=70 GPa, r=2800 kg/m3, and
n=0·3. (It should be noted that when a=0°, a cylindrical shell of mass 2prhR2

0 /3
results; when 0°Q aQ 90°, a generic conical panel results, with an increasing
radius at the large end and hence an increasing surface area—the mass of this
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Figure 5. (a) Fundamental mode of a CFFF extreme geometry conical panel, after [15]. (b)
Fundamental mode of a CCCC extreme geometry conical panel, after [15].

generic panel is 2prhR2
0 (1+ sin a)/3; and when a=90°, a flat sectorial plate of

mass 4prhR2
0 /3 results.)

The mesh design chosen for this particular problem consisted of dividing the
panel circumferentially into three equal lengthwise elements, each p-enriched with
a total of 10 hierarchical functions applied in each co-ordinate direction (see the
illustration accompanying Table 7). The rationale behind this design was in
recognition of the fact that most modes of the curved panels would primarily
involve deformations around the circumference, so by sub-dividing the panel
accordingly, it would be possible to capture such motion relatively easily and at
minimal expense. This reasoning is confirmed in Table 7, where the results from
the current h-p methodology for the extreme cases of a cylindrical shell and a
sector plate correlate surprisingly well with those from an ANSYS analysis, yet
at a fraction of the computational effort.

Frequency trends for the first six modes, rendered in terms of the
non-dimensional frequency V=va2(rh/D)1/2 versus cone semi-vertex angle a, are
presented in Figure 6 for the simply supported panel, and in Figure 7 for the
clamped panel.

Both figures show remarkably similar trends for the frequencies of the first six
modes of vibration of each panel, with the frequencies from the clamped case being
only marginally higher than the corresponding ones from the simply supported
case. At first sight, this seemed a little unusual, and further verification was sought
by using ANSYS to determine the frequencies for the two limiting cases
encountered here of a cylindrical shell and a sectorial plate. The results for these
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Figure 6. Frequency trends for the first six modes of a conical panel, showing non-dimensional
frequency V versus cone semi-vertex angle a. All edges S–S–S–S.

cases are presented in Table 7, where very good agreement can clearly be seen.
Such a comparison is most helpful in confirming the validity of the results
presented in Figures 6 and 7, especially in the light of the unusual dynamic
behaviour associated with these conical panels.

From Figures 6 and 7, it is evident that the frequencies of a given mode reduce
with increasing a, and there are two principal reasons for this: (i) as the larger end
radius is increased, the panel’s effective bending stiffness decreases for modes
which are aligned along a generator (modes aligned around the circumference will
not greatly be affected by this effect for the reasons described in detail in [22]);
and (ii) the mass of the panel is doubled as a is varied from 0° to 90°, this increase
occurring as a sinusoidal function of semi-vertex angle, a. It is this combined effect
of increasing mass (which is almost certainly the dominant factor here) and
decreasing flexural rigidity along the generator that is responsible for the natural
frequencies reducing with increasing semi-vertex angle a.

5. CONCLUSIONS

An initial study of the vibration characteristics of open, conically curved,
isotropic shell panels has been undertaken using the h-p version of the finite
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Figure 7. Frequency trends for the first six modes of a conical panel, showing non-dimensional
frequency V versus cone semi-vertex angle a. All edges C–C–C–C.

element method. The convergence properties of this shell element have been
established for particular geometries, thereby endorsing its suitability for use in
further parameter studies. Natural frequencies and modes have been obtained for
two completely free panels using (i) the h-p methodology reported here, (ii) a
commercially available finite element package, and (iii) experimental work.
Excellent agreement has been found between all three approaches. Some further
comparisons with the work of other investigators have also been performed, and
generally good agreement has been found. Where differences have been identified,
further verification has been sought using the finite element package ANSYS , and
the source of the problem has been traced to insufficiently converged results in the
work of other investigators. Finally, a brief parameter study has been presented
for clamped and simply supported conical panels, whose semi-vertex angle a has
been varied between 0° and 90°.

This work has highlighted some interesting nuances associated with the dynamic
behaviour of conical shells. Firstly, if extreme geometries are considered, highly
localized modes of vibration are likely to result, and these will prove difficult to
model accurately without a priori knowledge. Secondly, the level of mesh
refinement which gives fully converged frequencies for one particular cone
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geometry almost certainly will not give similarly converged frequencies for a
different geometry, so in general it will be necessary to validate the convergence
of each and every case. This is especially important for conical panels, since their
vibration behaviour is quite different from cylindrical panels, and it does not seem
possible to predict what effect a certain parameter change will have on a conical
panel, even if its effect on a similar cylindrical panel is known.

Regarding the current h-p finite element formulation derived in this paper, it
has been observed that its overall performance exceeds that of a more general
commercial software package. Perhaps this is not surprising when it is understood
that the work presented here is tailored specifically to conical panels, whereas the
commercial package makes use of a more general shell element. Even so, it is worth
noting that by using the h-p version of the FEM in preference to the h-version,
it is possible to obtain converged answers using some 50% fewer degrees of
freedom (see Table 3). Finally, it is worth pointing out that the methodology
advanced here for a generic conical panel can also be used to analyse closed conical
frusta, open or closed cylindrical shells (a=0°, R0 =RA set to the radius of the
cylinder), flat annular sectorial plates (a=90°, R0 set to the inner radius and RA

set to the outer radius of the plate), and flat sectorial wedge plates (a=90°, R0

set to an extremely small value (10) and RA set to the radius of the plate).
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